COMO AS CARACTERÍSTICAS ANATÔMICAS DO XILEMA PODEM INFLUENCIAR NO PROCESSO DE CURA DE FERIMENTOS EM ÁRVORES?

Autores

  • Diego Romeiro Instituto de Pesquisas Ambientais
  • Camila Moura Santos Instituto de Pesquisas Ambientais
  • Luís Alberto Bucci Instituto de Pesquisas Ambientais
  • Eduardo Luiz Longui Instituto de Pesquisas Ambientais

DOI:

https://doi.org/10.24278/2178-5031.202133201

Palavras-chave:

Parênquima axial, Fibras, Translocação, Árvores tropicais, Anatomia da madeira

Resumo

As árvores estão continuamente em risco de danos por animais e condições ambientais adversas, sua sobrevivência depende da capacidade de cicatrização de feridas. Respostas fisiológicas comuns à lesão são a proliferação celular, regeneração do tecido vascular e formação de compostos para proteger as células próximas à ferida. Conhecer a anatomia da madeira é essencial para compreender os mecanismos de cicatrização de feridas e sobrevivência da árvore. Estudamos 12 espécies tropicais para entender como algumas características da madeira contribuem para o processo de cicatrização de feridas. Fizemos a análise quantitativa das características da madeira e avaliamos a taxa de cicatrização das feridas dois anos após a coleta das amostras. Espécies com grande quantidade de parênquima axial, apresentaram maior taxa de cicatrização da ferida, comprovando que células do parênquima axial fornecem material para maior proliferação celular, agindo mais rápido no fechamento da ferida. Espécies com parênquima axial arranjado de forma a produzir uma rede entre vasos e raios através do tecido vivo, se recuperam e fornecem a passagem de hormônios que estimulam a divisão celular do tecido próximo à ferida, promovendo o crescimento de tecido em toda a área da ferida, acelerando seu fechamento. A ausência de parênquima axial dificulta essa recuperação por incapacitar as regiões afetadas; acima e abaixo da lesão, de produzir tecido suficiente para cicatrização de feridas. A presença de fibras mais longas é indicativo de maior teor de giberelina, envolvida na divisão celular durante a cicatrização; portanto, espécies com fibras mais longas tiveram cicatrização mais rápida das feridas.

Downloads

Não há dados estatísticos.

Referências

ALONI, R. Phytohormonal mechanisms that control wood quality formation in young and mature trees. In: ENTWISTLE, K.; HARRIS, P.;

WALKER, J. (Eds.). The compromised wood workshop. New Zealand: The Wood Technology Reserch Centre, 2007. p. 1-22.

ALONI, R. The induction of vascular tissues by auxin. In: DAVIES, P.J. (Ed.). Plant hormones: biosynthesis, signal transduction, action!Dordrecht: Kluwer Academic Publishers, 2010. p.485-506.

ALONI, R. The role of hormones in controlling vascular differentiation. In: FROMM, J. (Ed.). Cellular Aspects of Wood Formation. Berlin: Springer-Verlag, 2013. p. 99-139.

ALONI, R.; BAUM, S.F.; PETERSON, C.A. The role of cytokinin in sieve tube regeneration and callose production in wounded coleus internodes. Plant physiology, v. 93, n. 3, p. 982-989, 1990.

ARBELLAY, E.; FONTI, P.; STOFFEL, M. Duration and extension of anatomical changes in wood structure after cambial injury. Journal of Experimental Botany, v. 63, n. 8, p. 3271-3277, 2012.

ASAHINA, M. et al. Gibberellin produced in the cotyledon is required for cell division during tissue reunion in the cortex of cut cucumber and tomato hypocotyls 1. Plant physiology, v. 129, n. 1, p. 201-210, 2002.

BAUM, F.S.; ALONI, R.; PETERSON, C.A. Role of cytokinin in vessel regeneration in woundColeus internodes. Annals of Botany, v. 67, n. 6, p. 543-548, 1991.

BRADLEY, M.V.; CRANE, J.C. Gibberellinstimulated cambial activity in stems of apricot spur shoots. Science, v. 126, n. 3280, p. 972-973, 1957.

BORCHERT, R.; MCCHESNEY J.D.; WATSON, D. Wound healing in potato tuber tissue. Plant physiology, v. 53, n. 2, p. 187-191, 1974.

BORCHERT, R.; POCKMAN, W.T. Water storage capacitance and xylem tension in isolated branches of temperate and tropical trees. Tree physiology, v. 25, n. 4, p. 457-466, 2005.BRODERSEN, C.R.et al. The dynamics of embolism repair in xylem: in vivo visualizations using high-resolution computed tomography. Plant physiology, v. 154, n. 3, p. 1088-1095, 2010.

CARLQUIST, S. Ecological strategies of xylem evolution. Berkeley: University California Press,1975. 259 p.

CARLQUIST, S. Comparative wood anatomy. Systematic, ecological, and evolutionary aspects of dicotyledon wood, 2nd edn. Berlin: Springer -Verlag, 2001. 448 p.

CHAPOTIN, S.M.; RAZANAMEHARIZAKA, J.H.; HOLBROOK, N.M. Baobab trees (Adansonia) in Madagascar use stored water to flush new leaves but not to support stomatal opening before the rainy season. New phytologist, v. 169, n. 3, p. 549-559, 2006.

CHOAT, B.; JANSEN, S.; BRODRIBB, T.J., et al. Global convergence in the vulnerability of forests to drought. Nature, v. 491, n. 7426, p. 752-755, 2012.

DAYAN, J. et al. Leaf-induced gibberellin signaling is essential for internode elongation, cambial activity, and fiber differentiation in tobacco stems. The Plant Cell, v. 24, n. 1, p. 66-79, 2012.

ERIKSSON, M.E. et al. Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nature Biotechnology, v. 18, n. 7, p. 784-788, 2000.

EVERT, R.F. Esau’s Plant Anatomy: Meristems, cells, and tissues of the plant body: their structure, function, and development. 3rd Edition, Jonh Wiley and Son, New Jersey, 601 p.

FISHER, J.B.; EWERS, F.W. Wound healing in stems of lianas after twisting and girdling injuries. Botanical Gazette, v. 150, n. 3, p. 251-265, 1989.

FOX, J. The R Commander: A basic statistics graphical user interface to R. Journal of Statistical Software, v. 14, n. 9, p. 1-42, 2005.

FUKUDA, H. Xylogenesis: initiation, progression, and cell death. Annual review of plant physiology and plant molecular biology, v. 47, p. 299-325, 1996.

GLASS, S.V.; ZELINKA, S.L. Moisture relations and physical properties of wood. In: ROSS R. (Ed.). Wood handbook: wood as an engineering material. Madison, U.S.A: Department of Agriculture, Forest Service, Forest Products Laboratory, 2010. p. 1-19.

HAAVIK, L.J.; STEPHEN, F.M. Factors that affect compartmentalization and wound closure of Quercus rubra infested with Enaphalodes rufulus. Agricultural and Forest Entomology, v. 13, n. 3, p. 291-300, 2011.

IAWA COMMITTEE. IAWA list of microscopic features for hardwood identifcation. IAWA Bulletin, v.10, p. 219-332, 1989.

IMASEKI, H. Hormonal Control of WoundInduced Responses. In: PHARIS, R.P.; REID D.M. (Eds.) Encyclopedia of plant physiology new series volume 11- hormonai reguiation of deveiopment iii- role of environmental factors. Berlin Heidelberg: Springer, 1985. p. 485-512.

ISRAELSSON, M.; SUNDBERG, B.; MORITZ, T. Tissue-specific localization of gibberellins and expression of gibberellin-biosynthetic and signaling genes in wood-forming tissues in aspen. The Plant journal: for cell and molecular biology, v. 44, n. 3, p. 494-504, 2005.

KRAUS, J.E.; ARDUIN, M. Manual básico de métodos em morfologia vegetal. Rio de Janeiro: Editora EDUR, 1997. 198 p.

LARJAVAARA, M.; MULLER-LANDAU, H.C. PERSPECTIVE: Rethinking the value of high wood density. Functional Ecology, v. 24, n. 4, p. 701-705, 2010.

LIGGES, U.; MÄCHLER, M. Scatterplot3d - an R Package for visualizing multivariate data. Journalof Statistical Software, v. 8, n. 11, p. 1-20, 2003.

MCCULLOH, K.A.; SPERRY, J.S.; ADLER, F.R. Murray’s law and the hydraulic vs mechanical functioning of wood. Functional ecology, v. 18, n. 2, p. 931-938, 2004.

MORRIS, H. et al. The parenchyma of secondary xylem and its critical role in tree defense against fungal decay in relation to the CODIT model. Frontier in Plant Science. 7:1665. doi: 10.3389/fpls.2016.01665

NEELY, D. Tree wound closure. Journal of Arboriculture, v. 14, n. 6, p. 148-152, 1988.

OKSANEN, J. et al. vegan: Community Ecology Package. R package version 2.3-0. Available at: <http://CRAN.R-project.org/package=vegan>. Access on: 17 apr. 2015.

OSTRY, M.E.; VENETTE, R.C.; JUZWIK, J. Decline as a disease category: is it helpful? Phytopathology, v. 101, n. 4, p. 404-409, 2011.

PANG, Y. et al. Phloem transdifferentiation from immature xylem cells during bark regeneration after girdling in Eucommia ulmoides Oliv. Journal of experimental botany, v. 59, n. 6, p. 1341-1351, 2008.

R CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: <http://www.R-project.org/.>. Access on: 02 may. 2015.

REID, J.B.; ROSS, J.J. Regulation of tissue repair in plants. Proceedings of the National Academy of Sciences of the United States of America, v. 108, n. 42, p. 17241-17242, 2011.

SCHMITT, U.; LIESE, W. Wound reaction of the parenchyma in Betula. IAWA Bulletin, v. 11, n. 4, p. 413-420, 1990.

SCHMITT, U.; LIESE, W. Wound tyloses in Robinia pseudoacacia L. IAWA Journal, v. 15, n. 2, p. 157-160, 1994.

SCHWARZE, F.W.M.R. Wood decay under the microscope. Fungal Biology Reviews, v. 21, n. 4, p. 133-170, 2007.

SHARRIF MOGHADDASI, M.; KUMAR, S.V. Aloe vera their chemicals composition and applications: A review. International Journal of Biological & Medical Research, v. 2, n. 1, p. 466-471, 2011.

STOBBE, H. et al. Developmental stages and fine structure of surface callus formed after debarking of living lime trees (Tilia sp.). Annals of Botany, v. 89, n. 6, p. 773-782, 2002.

TAIZ, L.; ZEIGER, E. Plant Physiology, Fourth Edition. Sunderland: Sinauer Associates, 2006. 764 p..

TOLEDO, J.J.; MAGNUSSON, W.E.; CASTILHO, C.V. Competition, exogenous disturbances and senescence shape tree size distribution in tropical forest: evidence from tree mode of death in Central Amazonia. Journal of Vegetation Science, v. 24, n. 4, p. 651-663, 2013.

TYREE, M.T. et al. Refilling of embolized vessels in young stems of laurel. Do we need a new paradigm? Plant physiology, v. 120, n. 1, p. 11-22, 1999.

UGGLA, C. et al. Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in scots pine. Plant physiology, v.125, n. 4, p. 2029-2039, 2001.

YADETA, K.A.; THOMMA, B.P.H.J. The xylem as battleground for plant hosts and vascular wilt pathogens. Frontiers in plant science, v. 4, n. 97, p. 1-12, 2013.

WAREING, F.B. Interaction between indole-acetic acid and gibberellic acid in cambial activity. Nature, v. 181, p. 1744-1745. 1958.

ZWIENIECKI, M.A.; HOLBROOK, N.M. Confronting Maxwell’s demon: biophysics of xylem embolism repair. Trends in plant science, v. 14, n. 10, p. 530-534, 2009.

Downloads

Publicado

2021-12-02

Como Citar

ROMEIRO, D.; SANTOS, C. M.; BUCCI, L. A.; LONGUI, E. L. COMO AS CARACTERÍSTICAS ANATÔMICAS DO XILEMA PODEM INFLUENCIAR NO PROCESSO DE CURA DE FERIMENTOS EM ÁRVORES?. Revista do Instituto Florestal, São Paulo, v. 33, n. 2, p. 119–138, 2021. DOI: 10.24278/2178-5031.202133201. Disponível em: https://rif.emnuvens.com.br/revista/article/view/21. Acesso em: 21 nov. 2024.

Edição

Seção

Artigos Científicos