PROPAGAÇÃO DE PERFILHOS DE GRAMINÓIDES DO CERRADO: NOVAS POSSIBILIDADES PARA PRODUÇÃO DE MUDAS

Autores

  • Lucas Dias Sanglade Universidade Federal de São Carlos
  • Raquel Stucchi Boschi Universidade Federal de São Carlos
  • Gabriela Strozzi Universidade Federal de São Carlos
  • Dalva Maria da Silva Matos Universidade Federal de São Carlos
  • Vânia Regina Pivello Universidade de São Paulo

DOI:

https://doi.org/10.24278/rif.2024.36e955

Palavras-chave:

Grassy biomes; Seedling production; Vegetative propagation; Active restoration; Savanna restoration

Resumo

A falta de conhecimento e os desafios ecológicos na reprodução de graminóides do Cerrado têm impedido a produção comercial de mudas, dificultando os esforços para restaurar o Cerrado. Este estudo teve como objetivo avaliar a sobrevivência de perfilhos vegetativos provenientes da propagação clonal de cinco espécies nativas de graminóides cespitosos do Cerrado. Coletamos dez plantas adultas (matrizes) por espécie, em uma área de cerrado sensu stricto, em São Carlos – SP, para serem utilizadas como fonte de unidades clonais (perfilhos). Um total de 68 perfilhos por espécie foram separados e transplantados para tubetes, com a sobrevivência dos perfilhos sendo monitorada em condições de viveiro por 60 dias. Axonopus pellitus, Bulbostylis hirtella e Aristida jubata apresentaram taxas de sobrevivência próximas a 70%, enquanto Aristida setifolia e Andropogon bicornis tiveram taxas de sobrevivência abaixo de 12%. Esses resultados sugerem que o transplante de perfilhos pode ser um método viável para a produção comercial de parte das espécies graminóides do Cerrado, contribuindo para restauração desse bioma.

Downloads

Não há dados estatísticos.

Referências

Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G. 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22:711-728.

Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67(1):1-48.

Bosio F, Rossi S, Marcati C.R. 2016. Periodicity and environmental drivers of apical and lateral growth in a Cerrado woody species. Trees 30:1495-1505.

Briske DD, Derner JD. 1998. Clonal biology of caespitose grasses. In: Cheplick GP, ed. Population biology of grasses. Cambridge: Cambridge University Press. Chapter 4:106-135.

Buisson E, Fidelis A, Overbeck GE, Schmidt IB, Durigan G, Young TP, Swanni T, Alvarado AJ, Arruda S, Boisson WB, Coutinho A, Kirkman K, Oliveira RS, Schmitt MH, Siebert F, Siebert S, Thompson DI, Silveira FAO. 2020. A research agenda for the restoration of tropical and subtropical grasslands and savannas. Restoration Ecology 29(S1) e13292:1-18.

Coutinho AG, Alves M, Sampaio AB, Schmidt IB, Vieira DLM. 2019. Effects of initial functional-group composition on assembly trajectory in savanna restoration. Applied Vegetation Science 22(1):61-70.

Dairel M, Fidelis A. 2020. How does fire affect germination of grasses in the Cerrado? Seed Science Research 30(4):275-283.

du Toit JCO. 2009. Early survival and growth of vegetatively propagated indigenous grasses in a clear-felled timber plantation in KwaZulu-Natal, South Africa. African Journal of Range & Forage Science 26(2):97-101.

Fontenele HGV, Figueirôa RNA, Pereira CM, Nascimento VT, Musso C, Miranda HS. 2020. Protected from fire, but not from harm: seedling emergence of savanna grasses is constrained by burial depth. Plant Ecology & Diversity 13(2), 189–198.

Forbes BC. 1993. Small-scale wetland restoration in the High Arctic: a long-term perspective. Restoration Ecology 1(1):59-68.

Forlin T, Lima APL, Lima SF, Paula RCM, Neto VBP, Silva WG. 2020. Initial growth crown cover of Cerrado species from different successional groups. Ciência e Natura 42, e42: 1-17.

Franzon RC, Carpenedo S, Silva JCS. 2010. Produção de mudas: principais técnicas utilizadas na propagação de fruteiras. Brasília: Embrapa Cerrados. 56 p.

Gorgone-Barbosa E, Daibes LF, Novaes RB, Pivello VR, Fidelis A. 2020. Fire cues and germination of invasive and native grasses in the Cerrado. Acta Botanica Brasilica 34(1):185-191.

Haridasan M. 2008. Nutritional adaptations of native plants of the Cerrado biome in acid soils. Brazilian Journal of Plant Physiology 20(3):183-195.

Hobbs RJ, Gimingham CH, Band WT. 1983. The effects of planting technique on the growth of Ammophila arenaria (L.) Link and Lymus arenarius (L.) Hochst. Journal of Applied Ecology 20(2):659-672.

Huddleston RT, Young TP. 2004. Spacing and competition between planted grass plugs and preexisting perennial grasses in a restoration site in Oregon. Restoration Ecology 12(4):546-551.

Kolb RM, Pilon NAL, Durigan G. 2016. Factors influencing seed germination in Cerrado grasses. Acta Botanica Brasilica 30(1):87-92.

Kraehmer H. 2019. Growth forms of grasses. In: Kraehmer H. (Ed.) Grasses: crops, competitors, and ornamentals. Hoboken: John Wiley & Sons, Inc. p. 447-456.

Leverkus AB, González AL, Andivia E, Castro J, Jiménez MN, Navarro FB. 2021. Seeding or planting to revegetate the world's degraded land: systematic review and experimentation to address methodological issues. Restoration Ecology 29(4), e13372:1-4.

Oliveira ACC, Forti VA, Loiola PP, Viani RAG. 2020. Techniques for seedling production of two native grasses: new perspectives for Brazilian Cerrado restoration. Restoration Ecology 28(2):297-303.

Oliveira ACC, Forti VA, Viani RAG. 2021. Fertility responses of a native grass: technology supporting native plant production for restoration in Brazil. Restoration Ecology 30(3):e13534.

Pellizzaro KF, Cordeiro AOO, Alves M, Ribeiro F, Motta CP, Rezende GM, Silva RRP, Ribeiro JF, Sampaio AB, Vieira DLM, Schmidt IB. 2017. “Cerrado” restoration by direct seeding: field establishment and initial growth of 75 trees, shrubs and grass species. Brazilian Journal of Botany 40(3):681-693.

Pilon NAL, Buisson E, Durigan G. 2018a. Restoring Brazilian savanna ground layer vegetation by topsoil and hay transfer. Restoration Ecology 26(1):73-81.

Pilon NAL, Assis GB, Souza FM, Durigan G. 2018b. Native remnants can be sources of plants and topsoil to restore dry and wet Cerrado grasslands. Restoration Ecology 27(3):569-580.

R Core Team. 2024. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available in:<https://www.R-project.org/>. Accessed in: 01 jul 2024.

Sena L, Bahia TO, Fernandes GW. 2021. Vegetative propagation of Schizachyrium tenerum (Poaceae) under different substrates and environments. Floresta e Ambiente 28(2) e20200051:1-8.

Van Groenendael JM, Klimeš L, Klimešová J, Hendriks RJJ. 1996. Comparative ecology of clonal plants. Philosophical Transactions of the Royal Society B: Biological Sciences 351(1345):1331-1339.

Wanderley MGL, Shepherd GJ, Giulietti AM. 2001. Flora fanerogâmica do Estado de São Paulo (Poaceae). São Paulo: Fapesp/Hucitec. 291 p.

Wigley BJ, Charles-Dominique T, Hempson GP, et al. 2020. A handbook for the standardised sampling of plant functional traits in disturbance-prone ecosystems, with a focus on open ecosystems. Australian Journal of Botany 68(8):473-531.

Young A, Boyle T, Brown T. 1996. The population genetic consequences of habitat fragmentation for plants. Trends in Ecology & Evolution 11(10):413-418.

Zaidan LBP, Carreira RC. 2008. Seed germination in Cerrado species. Brazilian Journal of Plant Physiology 20(3):167-181.

Downloads

Publicado

2024-12-02

Como Citar

SANGLADE, L. D.; BOSCHI, R. S.; STROZZI, G.; MATOS, D. M. da S.; PIVELLO, V. R. PROPAGAÇÃO DE PERFILHOS DE GRAMINÓIDES DO CERRADO: NOVAS POSSIBILIDADES PARA PRODUÇÃO DE MUDAS. Revista do Instituto Florestal, São Paulo, v. 36, p. 1–6, 2024. DOI: 10.24278/rif.2024.36e955. Disponível em: https://rif.emnuvens.com.br/revista/article/view/955. Acesso em: 23 jan. 2025.

Edição

Seção

Notas Científicas