TILLER PROPAGATION OF CERRADO GRAMINOIDS: NEW POSSIBILITIES FOR SEEDLING PRODUCTION (SCIENTIFIC NOTE)

Autores/as

  • Lucas Dias Sanglade Universidade Federal de São Carlos
  • Raquel Stucchi Boschi Universidade Federal de São Carlos
  • Gabriela Strozzi Universidade Federal de São Carlos
  • Dalva Maria da Silva Matos Universidade Federal de São Carlos
  • Vânia Regina Pivello Universidade de São Paulo

DOI:

https://doi.org/10.24278/rif.2024.36e955

Palabras clave:

Grassy biomes; Seedling production; Vegetative propagation; Active restoration; Savanna restoration

Resumen

The lack of knowledge and ecological challenges in the reproduction of Cerrado graminoids has prevent the commercial production of native seedling, complicating efforts to restore the Cerrado. This study aimed to assess the survival of vegetative tillers from clonal propagation of five native caespitose graminoid species from the Cerrado. We collected ten adult plants (matrices) per species in of a cerrado sensu stricto area, located at São Carlos – SP, to be used as source of clonal units (tillers). A total of 68 tillers per specie were separated and transplanted into containers, with survival monitored under nursery conditions for 60 days. Axonopus pellitus, Bulbostylis hirtella and Aristida jubata showed survival rates close to 70%, while Aristida setifolia and Andropogon bicornis had survival rates below 12%. These results suggest that tiller transplanting could be a viable method for commercial production of certain Cerrado graminoids, contributing to the of this biome.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G. 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22:711-728.

Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67(1):1-48.

Bosio F, Rossi S, Marcati C.R. 2016. Periodicity and environmental drivers of apical and lateral growth in a Cerrado woody species. Trees 30:1495-1505.

Briske DD, Derner JD. 1998. Clonal biology of caespitose grasses. In: Cheplick GP, ed. Population biology of grasses. Cambridge: Cambridge University Press. Chapter 4:106-135.

Buisson E, Fidelis A, Overbeck GE, Schmidt IB, Durigan G, Young TP, Swanni T, Alvarado AJ, Arruda S, Boisson WB, Coutinho A, Kirkman K, Oliveira RS, Schmitt MH, Siebert F, Siebert S, Thompson DI, Silveira FAO. 2020. A research agenda for the restoration of tropical and subtropical grasslands and savannas. Restoration Ecology 29(S1) e13292:1-18.

Coutinho AG, Alves M, Sampaio AB, Schmidt IB, Vieira DLM. 2019. Effects of initial functional-group composition on assembly trajectory in savanna restoration. Applied Vegetation Science 22(1):61-70.

Dairel M, Fidelis A. 2020. How does fire affect germination of grasses in the Cerrado? Seed Science Research 30(4):275-283.

du Toit JCO. 2009. Early survival and growth of vegetatively propagated indigenous grasses in a clear-felled timber plantation in KwaZulu-Natal, South Africa. African Journal of Range & Forage Science 26(2):97-101.

Fontenele HGV, Figueirôa RNA, Pereira CM, Nascimento VT, Musso C, Miranda HS. 2020. Protected from fire, but not from harm: seedling emergence of savanna grasses is constrained by burial depth. Plant Ecology & Diversity 13(2), 189–198.

Forbes BC. 1993. Small-scale wetland restoration in the High Arctic: a long-term perspective. Restoration Ecology 1(1):59-68.

Forlin T, Lima APL, Lima SF, Paula RCM, Neto VBP, Silva WG. 2020. Initial growth crown cover of Cerrado species from different successional groups. Ciência e Natura 42, e42: 1-17.

Franzon RC, Carpenedo S, Silva JCS. 2010. Produção de mudas: principais técnicas utilizadas na propagação de fruteiras. Brasília: Embrapa Cerrados. 56 p.

Gorgone-Barbosa E, Daibes LF, Novaes RB, Pivello VR, Fidelis A. 2020. Fire cues and germination of invasive and native grasses in the Cerrado. Acta Botanica Brasilica 34(1):185-191.

Haridasan M. 2008. Nutritional adaptations of native plants of the Cerrado biome in acid soils. Brazilian Journal of Plant Physiology 20(3):183-195.

Hobbs RJ, Gimingham CH, Band WT. 1983. The effects of planting technique on the growth of Ammophila arenaria (L.) Link and Lymus arenarius (L.) Hochst. Journal of Applied Ecology 20(2):659-672.

Huddleston RT, Young TP. 2004. Spacing and competition between planted grass plugs and preexisting perennial grasses in a restoration site in Oregon. Restoration Ecology 12(4):546-551.

Kolb RM, Pilon NAL, Durigan G. 2016. Factors influencing seed germination in Cerrado grasses. Acta Botanica Brasilica 30(1):87-92.

Kraehmer H. 2019. Growth forms of grasses. In: Kraehmer H. (Ed.) Grasses: crops, competitors, and ornamentals. Hoboken: John Wiley & Sons, Inc. p. 447-456.

Leverkus AB, González AL, Andivia E, Castro J, Jiménez MN, Navarro FB. 2021. Seeding or planting to revegetate the world's degraded land: systematic review and experimentation to address methodological issues. Restoration Ecology 29(4), e13372:1-4.

Oliveira ACC, Forti VA, Loiola PP, Viani RAG. 2020. Techniques for seedling production of two native grasses: new perspectives for Brazilian Cerrado restoration. Restoration Ecology 28(2):297-303.

Oliveira ACC, Forti VA, Viani RAG. 2021. Fertility responses of a native grass: technology supporting native plant production for restoration in Brazil. Restoration Ecology 30(3):e13534.

Pellizzaro KF, Cordeiro AOO, Alves M, Ribeiro F, Motta CP, Rezende GM, Silva RRP, Ribeiro JF, Sampaio AB, Vieira DLM, Schmidt IB. 2017. “Cerrado” restoration by direct seeding: field establishment and initial growth of 75 trees, shrubs and grass species. Brazilian Journal of Botany 40(3):681-693.

Pilon NAL, Buisson E, Durigan G. 2018a. Restoring Brazilian savanna ground layer vegetation by topsoil and hay transfer. Restoration Ecology 26(1):73-81.

Pilon NAL, Assis GB, Souza FM, Durigan G. 2018b. Native remnants can be sources of plants and topsoil to restore dry and wet Cerrado grasslands. Restoration Ecology 27(3):569-580.

R Core Team. 2024. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available in:<https://www.R-project.org/>. Accessed in: 01 jul 2024.

Sena L, Bahia TO, Fernandes GW. 2021. Vegetative propagation of Schizachyrium tenerum (Poaceae) under different substrates and environments. Floresta e Ambiente 28(2) e20200051:1-8.

Van Groenendael JM, Klimeš L, Klimešová J, Hendriks RJJ. 1996. Comparative ecology of clonal plants. Philosophical Transactions of the Royal Society B: Biological Sciences 351(1345):1331-1339.

Wanderley MGL, Shepherd GJ, Giulietti AM. 2001. Flora fanerogâmica do Estado de São Paulo (Poaceae). São Paulo: Fapesp/Hucitec. 291 p.

Wigley BJ, Charles-Dominique T, Hempson GP, et al. 2020. A handbook for the standardised sampling of plant functional traits in disturbance-prone ecosystems, with a focus on open ecosystems. Australian Journal of Botany 68(8):473-531.

Young A, Boyle T, Brown T. 1996. The population genetic consequences of habitat fragmentation for plants. Trends in Ecology & Evolution 11(10):413-418.

Zaidan LBP, Carreira RC. 2008. Seed germination in Cerrado species. Brazilian Journal of Plant Physiology 20(3):167-181.

Descargas

Publicado

2024-12-02

Cómo citar

SANGLADE, L. D.; BOSCHI, R. S.; STROZZI, G.; MATOS, D. M. da S.; PIVELLO, V. R. TILLER PROPAGATION OF CERRADO GRAMINOIDS: NEW POSSIBILITIES FOR SEEDLING PRODUCTION (SCIENTIFIC NOTE). Revista del Instituto Forestal, São Paulo, v. 36, p. 1–6, 2024. DOI: 10.24278/rif.2024.36e955. Disponível em: https://rif.emnuvens.com.br/revista/article/view/955. Acesso em: 5 feb. 2025.

Número

Sección

Notas Científicas