EFFECTS OF DIFFERENT RIPARIAN VEGETATION STRUCTURES ON MICROCLIMATIC VARIABLES AND SENSATION OF THERMAL COMFORT

Authors

  • Érica Lóis Universidade Estadual de Campinas
  • Rosely Ferreira Santos Universidade Estadual de Campinas
  • Lucila Chebel Labaki Universidade Estadual de Campinas

DOI:

https://doi.org/10.24278/2178-5031.2011231289

Keywords:

thermal comfort, watercourses, riparian vegetation, ecosystem services

Abstract

Natural vegetation along river corridors plays an important role in the control and environmental quality of a region, since it establishes appropriate conditions for climate control. Undoubtedly, each structure of riparian vegetation should to a certain degree provide efficiency for such a role. However, what are the differences in responses between different types of structure? With the aim of contributing to a response, this study discusses the microclimatic variations based on the evaluation of the relationship between four climatic variables in three different vegetation physiognomy profiles, adjacent to Ribeirão Cachoeira (Campinas, Brazil). Data of solar radiation, air and globe temperature, relative humidity and wind speed, as well as water temperature were obtained for each profile studied for three days, in hours of higher solar radiation (from 8 am to 4 pm), at three different distances from the watercourse along the profiles, in summer and winter. As an indicator of thermal comfort, the Physiological Equivalent Temperature – PET was assessed for three schedules, in the different situations studied. The results show the importance of the presence and type of vegetation structure mainly in the attenuation of solar radiation and its predominant role in controlling the temperature and relative humidity in the two seasons. The attenuation of solar radiation reached 97% in forest structure and 83% in secondary forests; the relative humidity varied in summer from 85% to 100% in forest structure and between 40% and 75% in the secondary forests. Differences of up to 12 ºC were observed between forest structure and herbaceous field. The temperature of the water system in the forest structure was softened in up to 3 o C in comparison with the water temperature in the herbaceous field. The PET indicated thermally comfortable environment in almost all times for the forest structure, while situations of heat stress were observed in the structure C, with the continuous herbaceous field, at all times in the summer.

Downloads

Download data is not yet available.

References

ANGELOCCI, L.R. Água na planta e trocas gasosas/energéticas com a atmosfera: introdução ao tratamento biofísico. Piracicaba: Edição do Autor, 2002. 268 p.

BARTHOLOMEI, C.L.B.; LABAKI, L.C. Environmental parameters and thermal comfort provided by different tree species. In: PASSIVE AND LOW ENERGY ARCHITECTURE (PLEA): DESIGN WITH THE ENVIRONMENT, 19., 2002, Toulouse. Proceedings… Toulouse: GRECO, 2002. v. 1, p. 341-344.

______. How much does the change of species of trees affect their solar radiation attenuation? In: INTERNATIONAL CONFERENCE ON URBAN CLIMATE, 2003, Lodz. Annals... Lodz: IAUC. 2003. v. 1, p. 267-270.

CAMPINAS (Município). Secretaria de Planejamento e Meio Ambiente. Plano de Gestão da Área de Proteção Ambiental da Região de Sousas e Joaquim Egídio: APA Municipal. Campinas: SEPLAMA – PMC, 1996. 197 p.

CANTON, M.A.; CORTEGOSO, J.L.; DE ROSA, C. Solar permeability of urban trees in cities of western Argentina. Energy and Buildings, v. 20, n. 3, p. 219-230, 1994.

COSTANZA, R. et al. The value of the world’s ecosystem services and natural capital. Nature, v. 387, n. 1, p. 253-215, 1997.

DACANAL, C.; LABAKI, L.C.; LEITE DA SILVA, T.M. Vamos passear na floresta! O conforto térmico em fragmentos florestais urbanos. Ambiente Construído, v. 10, n. 2, p. 115-132, 2010.

DAN MOORE, R.; SPITTLEHOUSE, D.L.; STORY, A. Riparian microclimate and stream temperature response to forest harvesting: a review. Journal of the American Water Resources Association, v. 41, n. 4, p. 813-834, 2005.

DIMOUDI, A.; NIKOLOPOULOU, M. Vegetation in the urban environment: microclimatic analysis and benefits. Energy and Buildings, v. 35, n. 1, p. 69-76, 2003.

FRANÇA, J.T.; POGGIANI, F. Variação do microclima em áreas com diferentes idades de sucessão secundária na Floresta Nacional do Jamarí-RO. In: CONGRESSO DE ECOLOGIA DO BRASIL, 3., 1996, Brasília. Anais... Brasília, DF: CEB/UNB, 1996. p. 422-423.

FRAZER, G.W.; CANHAM, C.D.; LERTZMAN, K.P. Gap Light Analyzer (GLA), Version 2.0: imaging software to extract canopy structure and gap light transmission indices from true color fisheye photographs, users manual and program documentation. Burnaby: Simon Fraser University; Millbrook, New York: Institute of Ecosystem Studies, 1999. 36 p. Disponível em: or . Acesso em: 3 out. 2010.

JOHNSON, S.L. Factors influencing stream temperatures in small streams: substrate effects and a shading experiment. Canadian Journal of Fisheries and Aquatic Sciencies, v. 61, n. 6, p. 913-923, 2004.

LABAKI, L.C. et al. Thermal comfort in outdoor spaces: the role of vegetation as a means of controlling solar radiation. In: PLEA: architecture, city, environment, 2000, Cambridge. Proceedings.... Londres: James & James (Science Publishers), 2000. p. 501-505.

LARCHER, W. Ecofisiologia vegetal. São Carlos: RiMa, 2004. 531 p.

LIMA, E.C. et al. Aspectos fisio-anatômicos de plantas jovens de Cupani avernalis Camb. submetidas a diferentes níveis de sombreamento. Revista Árvore, v. 30, n. 1, p. 33-43, 2006.

MATZARAKIS, A.; MAYER H. Heat stress in Greece. International Journal of Biometeorology, v. 40, n. 2, p. 34-39, 1997.

______.; ______.; IZIOMON, M.G. Applications of a universal thermal index: physiological equivalent temperature. International Journal of Biometeorology, v. 43, n. 2, p. 76-84, 1999. MILLENNIUM ECOSYSTEM ASSESSMENT. Ecosystems and human well-being. Washington, D.C.: Island Press, 2003. 245 p.

PEIXOTO, M.C.; LABAKI, L.C.; SANTOS, R.F. Conforto térmico em cidades: o efeito da arborização no controle da radiação solar. In: ENCONTRO NACIONAL DE TECNOLOGIA DO AMBIENTE CONSTRUÍDO (ENTAC): TECNOLOGIA E QUALIDADE NA HABITAÇÃO, 1995, Rio de Janeiro. Anais... Rio de Janeiro: ANTAC, 1995. p. 629-634.

POLLOCK, M.M. et al. Stream temperature relationships to forest harvest in western Washington. Journal of the American Water Resources Association, v. 45, n. 1, p. 141-156, 2009.

RAYMAN 1.2. Software livre. Freiburg: Instituto Meteorológico da Universidade de Freiburg. Disponível em: . Acesso em: ago. 2009.

RUAS, A.C. Sistematização da avaliação de conforto térmico em ambientes edificados e suas aplicações num software. 2002. 183 f. Tese (Doutorado em Engenharia Civil) – Faculdade de Engenharia Civil, Universidade Estadual de Campinas, Campinas.

SOMMER, R. et al. Transpiration and canopy conductance of secondary vegetation in the eastern Amazon. Agricultural and Forest Meteorology, v. 112, p. 103-121, 2002.

ST-HILAIRE, A. et al. Water temperature modelling in a small forested stream: implication of forest canopy and soil temperature. Canadian Journal Civil Engeneering, v. 27, n. 6, p.1095-1108, 2000.

TAIZ, L.; ZEIGER, E. Fisiologia vegetal. 3. ed. Porto Alegre: Artmed, 2004. 719 p.

THOMAZIELLO, S.; SANTOS, R.F. Environmental impacts assessment in leisure rural property developments. In: INTERNATIONAL SYMPOSIUM ON ENVIRONMENTAL GEOTECHNOLOGY AND GLOBAL DEVELOPMENT, 5., 2000, Belo Horizonte. Proceedings... Belo Horizonte: Universidade Federal de Minas Gerais, 2000. v. 1. CD ROM.

TOPPING, J. Errors of observations and their treatment. 4th ed. London: Science Paperbacks, 1972. 120 p.

Published

2011-06-01

How to Cite

LÓIS, Érica; SANTOS, R. F.; LABAKI, L. C. EFFECTS OF DIFFERENT RIPARIAN VEGETATION STRUCTURES ON MICROCLIMATIC VARIABLES AND SENSATION OF THERMAL COMFORT. Journal of the Forest Institute , São Paulo, v. 23, n. 1, p. 117–136, 2011. DOI: 10.24278/2178-5031.2011231289. Disponível em: https://rif.emnuvens.com.br/revista/article/view/289. Acesso em: 20 sep. 2024.

Issue

Section

Scientific Articles