EVALUATION OF GENETIC PARAMETERS FOR GROWTH TRAITS AND WOOD PROPERTIES IN CLONES OF Hevea brasiliensis (Willd. Ex Adr. Juss.)
DOI:
https://doi.org/10.24278/rif.2024.36e947Palabras clave:
Clonal test, Rubber tree, Genetic improvement, Wood qualityResumen
Hevea brasiliensis is a forest species with potential for commercial planting for both latex and timber production at the end of the latex production cycle. This study aimed to determine the genetic variability of growth traits and wood properties in a 33-year-old clonal plantation of H. brasiliensis in the region of Selvíria, state of Mato Grosso do Sul. Significant differences were detected among the clones for DBH and total tree height. For the physical properties of the wood, only volumetric shrinkage showed a significant difference between clones; however, for all anatomical dimensions and mechanical properties, significant differences were found. Clone IAN717 stood out for the highest growth, while RRIM600 had the lowest growth. In terms of wood properties, clone RRIM600 exhibited highest mechanical resistance, while GT1 showed the lowest resistance. Most wood properties varied in the pith-to-bark direction, with the lowest values found in the pith region and the highest in the bark region, except for vessel frequency, where the opposite trend occurred. The highest heritability coefficients were observed for DBH, volumetric shrinkage in the bark region, vessel element diameter in the intermediate region, and vessel frequency in the bark region. The genetic correlation coefficient was high, positive, and significant between traits such as shear strength x modulus of rupture, modulus of elasticity x modulus of rupture, and volumetric shrinkage x modulus of rupture, indicating that selection for one trait may result in indirect gains in another.
Descargas
Citas
ALVARES CA, STAPE JL, SENTELHAS PC, GONÇALVES JLM, SPAROVEK G. 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22(6): 711-728.
AMORIM EP, TOMELERI JOP, YAMAJI FM, FREITAS MLM, CAMBUIM J, MORAES MA, LONGUI EL. 2020. Ash content and chemical elements in 10 clones of Hevea by scanning electron microscopy and energy dispersive spectroscopy SEM/EDS. Scientific Electronc Archives 13(8): 66-70.
AMORIM EP, MENUCELLI JR, GERMANO AD, FARIA RFP, DE ANDRADE BARBOSA J, ANDRADE PÁDUA F, LONGUI EL. 2021. Technological potential of fibers from 20 Hevea brasiliensis clones for use as pulp, paper, and composite materials. Research, Society and Development 10(10): e549101019102-e549101019102.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS - ABNT. 2022a. NBR 7190-1: Projeto de estruturas de madeira – Parte 1: Critérios de dimensionamento. Rio de Janeiro: ABNT.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS - ABNT. 2022b. NBR 7190-3: Projeto de estruturas de madeira – Parte 3: Métodos de ensaio para corpos de prova isentos de defeitos para madeiras de florestas nativas. Rio de Janeiro: ABNT.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS - ABNT. 2003. NBR 11941:Determinação da densidade Básica. Rio de Janeiro: ABNT.
BERLYN GP, MIKSCHE JP, SASS JE. 1976. Botanical microtechnique and cytochemistry. Arnes, Iowa, USA: The Iowa State University Press.
BOADU KB, ANOKYE R, AFRIFAH KA, TETTEH EN, ANNING OF, OSEI BK. 2022. Characterization of the fibre morphology and chemical composition of aged PB 260 and IRCA 41 clones of rubber (Hevea brasiliensis) wood for pulp and paper making. Journal of the Indian Academy of Wood Science 19(2): 133-140.
CHAENDAEKATTU N, MYDIN KK. 2018. Inheritance pattern and genetic correlations among growth and wood quality traits in Para rubber tree (Hevea brasiliensis) and implications for breeding. Tree Genetics & Genomes 14(5): 63.
DHAMODARAM TK. 2008. Status of Rubberwood processing and utilization in India: a country report. Promotion of Rubberwood processing technology in the Asia-Pacific region. In: ITTO/CFC International Rubberwood Workshop. Haikou, Hainan, People’s Republic of China: ITTO/CFC. 17-37.
DOURADO CL, MORAES MA, ALVES PF, KUBOTA TYK, SILVA JR, MOREIRA JP, MORAES MLT. 2018. Selection strategies for growth characters and rubber yield in two populations of rubber trees in Brazil. Industrial Crops and Products 118: 118–124.
EUFRADE JUNIOR HJ, OHTO JM, SILVA LL, LARA PALMA HA, BALLARIN AW. 2015. Potential of rubberwood (Hevea brasiliensis) for structural use after the period of latex extraction: a case study in Brazil. Journal of Wood Science 61(4): 384-390.
FUKATSU E, HIRAOKA Y, MATSUNAGA K, NAKATA R. 2015. Genetic relationship between wood properties and growth traits in Larix kaempferi obtained from a diallel mating test. Journal of Wood Science 61: 10–18.
GONÇALVES PS, SILVA MA, GOUVÊA LRL, SCALOPPI JUNIOR EJ. 2006. Genetic variability for girth growth and rubber yield in Hevea brasiliensis. Scientia Agricola 63(3): 246-254.
GONÇALVES PDS, BATAGLIA OC, ORTOLANI AA, FONSECA FS. 2001. Manual de Heveicultura para o Estado de São Paulo (Série Tecnologia APTA, 189). Campinas: Instituto Agronômico. 78 p.
HARIDASAN V. 1989. Rubber wood promise of the future. Rubber Board Bulletin 25: 7-8.
HONG Z, FFRIES A, WU HX. 2014. High negative genetic correlations between growth traits and wood properties suggest incorporating multiple traits selection including economic weights for the future Scots pine breeding programs. Annals of Forest Science 71: 463–472.
IAWA COMMITTEE – IAWA. 1989. IAWA list of microscopic features for hardwood identification. IAWA Bulletin 3(10): 219-332.
LIMA IL, MACEDO HR, GALLO PB, GONÇALVES OS, GARCIA JN, LONGUI EL, FREITAS MLM, SEBBENN AM. 2015. Seleção de clones de Hevea brasiliensis para a região de Mococa, Estado de São Paulo. Revista do Instituto Florestal 27(2): 137–143.
LIMA IL, MOREIRA IV, RANZINI M, LONGUI EL, CAMBUIM J, MORAES MLTD, GARCIA JN. 2023. Physical and anatomical properties of Hevea brasiliensis clones. Maderas. Ciencia y Tecnología 25(20): 1-12.
LONGUI EL, LIMA IL, PANEQUE L, MACHADO JA, FREITAS ML, SEBBENN AM. 2024. Genetic parameters and correlations in growth and wood density traits of based on provenance and progeny testing. Silvae Genetica 73(1): 70-78.
MASENDRA IN, ISHIGURI F, HIDAYATI F, NIRSATMANTO A, SUNARTI SS, KARTIKANINGTYAS D, TAKASHIMA Y, TAKAHASHI Y, OHSHIMA J, YOKOTA S (2023) Variations of growth and wood traits in standing trees of the third-generation Acacia mangium families in Indonesia. Silvae Genetica 72: 150–161.
MONTES SC, HERNANDEZ RE, BEAULIEU J, WEBER JC. 2006. Genetic variation and correlations between growth and wood density of Calycophyllum spruceanum at an early age in the Peruvian Amazon. Silvae Genetica: 55: 217–228.
NAJI HR, SAHRI MH, NOBUCHI T, BAKAR ES. 2012. Clonal and planting density effects on some properties of rubber wood (Hevea brasiliensis Muell. Arg.). BioResources 7(1): 189-202.
OKINO EYA, SOUZA MR, SANTANA MAE, SOUSA ME, TEIXEIRA DE. 2004. Chapa aglomerada de cimento-madeira de Hevea brasiliensis Müll. Arg. Revista Arvore 28(3): 451-457.
OLIVEIRA LGM, MARQUES A, LOPES ED, GONÇALVES JF, MARTINS NS, PENA CAA, ARBEX DC, LAIA ML. 2021. Produtividade, adaptabilidade e estabilidade genotípica de clones de Eucalyptus spp. e Corymbia spp. em diferentes espaçamentos de plantio. Scientia Forestalis 49(131): e3664.
PALMA HAL. 2010. Propriedades técnicas e utilização da madeira da seringueira. In: VII Ciclo de Palestras sobre a Heveicultura Paulista. São José do Rio Preto: FUNEP/APABOR.
PERIES OS. 1980. Rubber wood - a by-product of the natural rubber industry. RRISL Bulletin 15: 1–5.
RAIA RZ, IWAKIRI S, TRIANOSKI R, ANDRADE AS. 2022. Study on the feasibility of veneer and plywood production of Hevea brasiliensis-clone RRIM600. Floresta 52(4): 422-430.
RAMOS LMA, LATORRACA JVDF, CASTOR NETO TC, MARTINS LS, SEVERO ETD. 2016. Anatomical characterization of tension wood in Hevea brasiliensis (Willd. ex A. Juss.) Mull. Arg. Revista Árvore 40(6): 1099-1107.
RESENDE MDV. 2016. Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Breeding and Applied Biotechnology 16(4): 330–339.
ROSSI M. 2017. Mapa pedológico do Estado de São Paulo: revisado e ampliado. São Paulo: Instituto Florestal. 118 p.
RIVA LC, MORAES MA, CAMBUIM J, ZULIAN DF SATO LM, CALFEITA FA, PANOSSO AR, MORAES MLT. 2020. Genetic control of wood quality of Myracrodruon urundeuva populations under anthropogenic disturbance. Crop Breeding and Applied Biotechnology 20: e320920411.
SAS INSTITUTE INC. - SAS. 1999. Procedures guide: version 8 (TSMO). Cary, NC: SAS.
SHUKLA SR, SHARMA SK. 2018. Effect of high temperature treatment of Hevea brasiliensis on density, strength properties and resistance to fungal decay. Journal of the Indian Academy of Wood Science 15: 87-95.
SILVA AG, COSTA E, PEREIRA TCC, BINOTTI FFS, SCALOPPI JUNIOR EJ, ZOZ T. 2020. Quality of rubber tree rootstock seedlings grown in protected environments and alternative substrates. Acta Scientiarum Agronomy 42(10): e43469.
SOARES VC, BIANCHI ML, TRUGUILHO PF, PEREIRA AJ, HÖFLER J. 2014. Correlações entre as propriedades da madeira e do carvão vegetal de híbridos de eucalipto. Revista Árvore 38: 543–549.
VIDAURRE GB, VITAL BR, OLIVEIRA ADC, OLIVEIRA JTS, MOULIN JC, SILVA JGM, SORANSO DR. 2018. Physical and mechanical properties of juvenile Schizolobium amazonicum Wood. Revista Árvore 42(1): e420101.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Revista del Instituto Forestal
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.