WOOD HYDRAULIC CHARACTERISTICS IN TWO PROVENANCES OF Myracrodruon urundeuva Allemão (Anacardiaceae) TREES

Autores/as

  • Gabriela Trindade Pires Instituto Florestal
  • Eduardo Luiz Longui Instituto Florestal
  • Guillermo Angeles Instituto de Ecología
  • Israel Luiz de Lima Instituto Florestal
  • Sandra Monteiro Borges Florsheim Instituto Florestal
  • Diego Romero Instituto Florestal

DOI:

https://doi.org/10.24278/2178-5031.201628208

Palabras clave:

hydraulic conductivity, aroeira, vessel diameter

Resumen

We compared the hydraulic features in wood of Myracrodruon urundeuva trees planted in Experimental Forest Station of Luiz Antônio, the seeds were collected from two natural populations in Ilha Solteira – IS and Pederneiras – PE, three cities in the state of São Paulo, Brazil. In a previous study of the same plantation, we observed radial variation differences in vessel diameter and frequency in the main stem between two seed provenances, leading us to hypothesize that this variation could be traced back to the origin of seeds. To test this hypothesis in the present work, branches approximately 2 cm in diameter were collected from ten trees, five from each provenance. We used the standard techniques for wood anatomy. Experimental values of hydraulic conductivity were obtained with the Sperry apparatus. The higher hydraulic conductivity found in IS could be explained by the wider vessel diameter when compared with vessel diameter and higher percentage of embolized vessels in PE. Therefore, it is possible that the characteristics of vessel width and embolization could be related to genotype in that the mother trees in IS may be more adapted to high water deficit. Vessel length did not vary between provenaces, this feature could not be used to explain the variations found in hydraulic conductivity. Our results show that different provenances have different strategies for water use and that the lower density in IS could be related to wider vessel diameter and, hence, more efficient water distribution.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

ANFODILLO, T. et al. Convergent tapering of xylem conduits in different woody species. New Phytologist, v. 169, p. 279-290, 2006.

______.; PETIT, G.; CRIVELLARO, A. Axial conduit widening in woody species: a still neglected anatomical pattern.

IAWA Journal, v. 34, p. 352-364, 2013. BAAS, P. et al. Evolution of xylem physiology. In: HEMSLEY, A.R.; POOLE, I. The evolution of plant physiology. London: Elsevier Academic Press, 2004. p. 273-295.

BRANDÃO, M. Caatinga. In: MENDONÇA, M.P.; LINS, L.V. (Org.). Lista vermelha das espécies ameaçadas de extinção da flora de Minas Gerais. Belo Horizonte: Fundação Biodiversitas: Fundação Zôo-Botânica de Belo Horizonte, 2000. p. 75-85.

BRODERSEN, C.R. et al. The dynamics of embolism repair in xylem: in vivo visualizations using high resolution computed tomography. Plant Physiology, v. 154, p. 1088-1095, 2010.

BUCCI, S.J. et al. Functional convergence in hydraulic architecture and water relations of tropical savanna trees: from leaf to whole plant. Tree Physiology, v. 24, p. 891-900, 2004

CARLQUIST, S. Comparative wood anatomy: systematic, ecological and evolutionary aspects of dicotyledon wood. 2nd ed. Berlin: Springer, 2001. 448 p.

CENTRO DE PESQUISAS METEOROLÓGICAS E CLIMÁTICAS APLICADAS À AGRICULTURA – CEPAGRI. Clima dos municípios paulistas. Available at: . Access on: 20 Sept. 2016.

CHOAT, B.; COBB, A.R.; JANSEN, S. Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. New Phytologist, v. 177, p. 608-626, 2008.

DAVIS, S.D.; SPERRY, J.S.; HACKE, U.G. The relationship between xylem conduit diameter and cavitation caused by freezing. American Journal of Botany, v. 86, p. 1367-1372, 1999.

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA – EMBRAPA. Sistema brasileiro de classificação de solos. Rio de Janeiro: CNPS, 1999. 412p.

EWERS, F.W.; FISHER, J.B. Techniques for measuring vessel lengths and diameters in stems of woody plants. American Journal of Botany, v. 76, n. 5, p. 645-656, 1989.

FAN, Z.X. et al. Hydraulic conductivity traits predict growth rates and adult stature of 40 Asian tropical tree species better than wood density. Journal of Ecology, v. 100, p. 732-741, 2012.

FONTI, P. et al. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytologist, v. 185, p. 42-53, 2010.

GLASS, S.; ZELINKA, S.L. Moisture relations and physical properties of wood. In: ROSS, R (Ed.). Wood handbook – wood as an engineering material. 100th ed. Madison: Centennial Edition. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 2010. p. 4.1-4.19. (General Technical Report FPL-GTR-190)

GURGEL-GARRIDO, L.M.A. et al. Programa de melhoramento genético florestal do Instituto Florestal. IF Série Registros, n. 18, p. 1-53, 1997.

HACKE U.G. et al. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology, v. 26, p. 689-701, 2006. HOADLEY, B. Understanding wood: a craftsman’s guide to wood technology. 2nd ed. Newtown: Taunton Press. 2000. 280 p.

IAWA COMMITTEE. IAWA list of microscopic features for hardwood identification. IAWA Bulletin n.s., v. 3, n. 10, p. 219-332, 1989.

JOHANSEN, D.A. Plant microtecniques. New York: McGraw-Hill, 1940. 523 p.

LORENZI, H. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Nova Odessa: Plantarum, 1998. v. 2, 352 p.

McELRONE, A.J.; et al. Variation in xylem structure and function in stems and roots of trees to 20 m depth. New Phytologist, v. 163, n. 3, p. 507-517, 2004.

MENDONÇA, M.P.; LINS, L.V. (Org.). Lista vermelha das espécies ameaçadas de extinção da flora de Minas Gerais. Belo Horizonte: Fundação Biodiversitas, 2000. 157 p.

OLSON, M.E.; ROSELL, J.A. Vessel diameter–stem diameter scaling across woody angiosperms and the ecological causes of xylem vessel diameter variation. New Phytologist, v. 197, p. 1204-1213, 2013.

QUEIROZ, C.R.A.A.; MORAIS, S.A.L.; NASCIMENTO, E.A. Caracterização dos taninos da aroeira-preta (Myracrodruon urundeuva). Revista Árvore, v. 26, n. 4, p. 485-492, 2002.

SILVA-LUZ, C.L.; PIRANI, J.R. Anacardiaceae. In: LISTA de espécies da flora do Brasil. Jardim Botânico do Rio de Janeiro, 2015. Available at: . Access on: April 2015

SPERRY, J.S.; DONNELLY, J.R.; TYREE, M.T. A method for measuring hydraulic conductivity and embolism in xylem. Plant Cell and Environment, v. 11, p. 35-40, 1988.

______.; HACKE, U.G.; PITTERMANN, J. Size and function in conifer tracheids and angiosperm vessels. American Journal of Botany, v. 93, p. 1490-1500, 2006.

TYREE, M.T.; EWERS, F.W. The hydraulic architecture of trees and other woody plants. New Phytologist, v. 119, p. 345-360, 1991.

______.; ZIMMERMANN, M.H. Xylem structure and the ascent of sap. 2nd ed. New York: Springer Science & Business Media, 2013. 283 p

Descargas

Publicado

2016-12-12

Cómo citar

PIRES, G. T.; LONGUI, E. L.; ANGELES, G.; LIMA, I. L. de; FLORSHEIM, S. M. B.; ROMERO, D. WOOD HYDRAULIC CHARACTERISTICS IN TWO PROVENANCES OF Myracrodruon urundeuva Allemão (Anacardiaceae) TREES. Revista del Instituto Forestal, São Paulo, v. 28, n. 2, p. 192–203, 2016. DOI: 10.24278/2178-5031.201628208. Disponível em: https://rif.emnuvens.com.br/revista/article/view/139. Acesso em: 20 sep. 2024.

Número

Sección

Artigos Científicos